Faculty Dividing Powers |
Time Limit: 4000ms, Special Time Limit:10000ms, Memory Limit:65536KB |
Total submit users: 40, Accepted users: 22 |
Problem 12500 : No special judgement |
Problem description |
Fred Faculty and Paul Power love big numbers. Day after day Fred chooses a random integer n and he computes n!. His friend Paul amuses himself by computing several powers of his randomly chosen integer k like k2, k3 and so on. On a hot summer day, Fred and Paul got really, really bored, so they decided to play a joke on their buddy Dave Divider. Fred chooses a random integer n while Paul chooses a random integer k. They want Dave to find the biggest integer i such that ki divides n! without a remainder, otherwise they will throw a cake in Dave's face. Because Dave does not like cakes in his face, he wants you to help him finding that integer i. |
Input |
The first line contains the number of test cases t (1 ≤ t ≤ 100). Each of the following t lines contains the two numbers n,k (2 ≤ n ≤ 1018, 2 ≤ k ≤ 1012) separated by one space. |
Output |
For each test case, print the maximum integer i on a separate line. |
Sample Input |
25 210 10 |
Sample Output |
32 |
Judge Tips |
Be careful with overflows in this problem (use 64 bit integers, avoid multiplications which will lead to overflow). |
Problem Source |
GCPC 2011 |
题意是说给出n , k 求出最大的 i 使得 n! % k^i == 0 …
假设最简单的情况…k是质数…要求 n! = 1*2*3…*n …易看出在k的倍数里..有1个k..在k的平方的有2个k..在k的立方中有3个k… 那么 n! 中k的个数为 n/k+n/(k^2)+n/(n^3)….及为最大的 i …
拓展一步..若k非质数..但只有一个质因子..如8,9,125 之类的…可以先求出在 n! 中有多少个其质因子,设为x…那么有多少个k..就是 i = x/p…p是指k为起质因数的多少次方..
最终拓展出题目所要求的任意数的情况..k=a1^k1 * a2^k2 * a3^k3…an^kn 其中a1,a2…an为质数..可以算出n!中有多少a1,a2,a3…an…而组成一个k需要k1个a1..k2个a2..kn个an..那么也就是说n(a1)/k1 , n(a2)/k2 …. n(an)/kn…中最小的就是答案…
转自:
1 #include2 #include 3 using namespace std; 4 5 bool p[1000010]; 6 __int64 precord[1000010]; 7 __int64 pcnt=0; 8 void init() 9 {10 memset(p,false,sizeof(p));11 for(int i=2;i<=500004;i++) //素数为false12 if(p[i]==false)13 for(int j=i+i;j<=1000009;j+=i)14 p[j]=true;15 for(int i=2;i<=1000008;i++)16 if(p[i]==false)17 precord[pcnt++]=i;18 }19 20 __int64 min(__int64 a,__int64 b)21 {22 if(a>b)23 return b;24 return a;25 }26 27 __int64 krecord[100000];28 __int64 krecordcnt[100000];29 30 int main()31 {32 init();33 int t;34 __int64 n,k;35 scanf("%d",&t);36 while(t--)37 {38 memset(krecord,0,sizeof(krecord));39 memset(krecordcnt,0,sizeof(krecordcnt));40 scanf("%I64d%I64d",&n,&k);41 42 __int64 cnt=0;43 __int64 temp=k;44 for(int i=0;i temp)47 break;48 if(temp%precord[i]==0)49 {50 krecord[++cnt]=precord[i];51 while(temp%precord[i]==0)52 {53 krecordcnt[cnt]++;54 temp/=precord[i];55 }56 }57 }58 if(temp!=1)59 {60 krecord[++cnt]=temp;61 krecordcnt[cnt]=1;62 }63 64 __int64 ans=-1;65 __int64 pp;66 __int64 count;67 for(int i=1;i<=cnt;i++)68 {69 pp=krecord[i];70 count=0;71 while(1)72 {73 count+=n/pp;74 if (n/krecord[i]>=pp)75 pp*=krecord[i];76 else77 break;78 }79 count/=krecordcnt[i];80 if(ans==-1)81 ans=count;82 else83 ans=min(ans,count);84 }85 printf("%I64d\n",ans);86 }87 return 0;88 }